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Let pn(x) denote the orthogonal polynomials associated with the Freud weight
exp(&x4), x # R. Let x=(4n�3)1�4 w. An asymptotic approximation is constructed
for pn(x), which holds uniformly for &1+=�w�M, where 0<=<1 and 1<
M<�. This approximation involves the Airy function and its derivative, and it
includes the two asymptotic formulas previously obtained by P. Nevai. Also presented
is a four-term asymptotic expansion for the zeros of pn(x). � 1999 Academic Press
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1. INTRODUCTION

In [6], Nevai has studied the asymptotic behavior of the orthogonal
polynomials

pn(x)=#n xn+ } } } , #n>0,

associated with the weight function exp(&x4). Here, the interval of ortho-
gonality is the real line R. These polynomials satisfy the recurrence relation

xpn(x)=an+1 pn+1(x)+anpn&1(x), n=0, 1, ..., (1.1)
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with p0(x)=#0>0 and p1(x)=#0 x�a1 . The coefficients an are determined
successively from the equation

n=4a2
n(a

2
n+1+a2

n+a2
n&1), n=1, 2, ..., (1.2)

where a2
0=0 and a2

1=1( 3
4)�1( 1

4). A two-term asymptotic expansion for an

has been given by Lew and Quarles [2]. They showed that

a2
n=\ n

12+
1�2

_1+
1

24n2+O \ 1
n4+& , n � �. (1.3)

If we let

,n(x)=a2
n+1+a2

n+x2, (1.4)

then Shohat [9] and Nevai [5] independently showed that the function

z(x)= pn(x)[,n(x)]&1�2 exp \&
x4

2 + (1.5)

satisfies the differential equation

z"+ f (n, x)z=0, (1.6)

where

f (n, x)=4a2
n[4,n(x) ,n&1(x)+1&4a2

nx2&4x4&2x2,n(x)&1]

&4x6&4x4,n(x)&1&3x2,n(x)&2+6x2+,n(x)&1. (1.7)

Based on the differential equation (1.6), Nevai [5] first obtained the
asymptotic formula

exp \&
x4

2 + pn(x)

=An&1�8 sin {\64
27+

1�4

n3�4x+(12)&1�4 n1�4x3&(n&1)
?
2=+o(n&1�8),

(1.8)

holding uniformly for x in any finite interval, where A is a positive constant.
To improve this result, Nevai [6] next considered the problem of deriving
a Plancherel�Rotach type asymptotic formula for these polynomials pn(x).

147A UNIFORM ASYMPTOTIC FORMULA



More precisely, he showed that with x=(4n�3)1�4 cos % the asymptotic
formula

pn(x) exp \&
x4

2 +=121�8?&1�2n&1�8(sin %)&1�2

_cos _ n
12

(12%&4 sin 2%&sin 4%)+
%
2

&
?
4&+O(n&9�8)

(1.9)

holds uniformly for =�%�?&=
Note that the validity of formula (1.9) requires % to be bounded away

from 0 and ?. In [3, p. 216], Lubuisky has obtained asymptotic formulas
which hold uniformly for % in intervals of the form n&$<%<?&n&$, $>0.
Even this extension excludes the possibility of allowing %=0 or ?. The aim
of this paper is to present an asymptotic formula which is uniformly valid
in an interval containing the critical value %=0. (It will become evident
from our discussion that a corresponding result can be obtained for the
case %=? by using symmetry.) Our anticipated result corresponds to the
classical Hilb formula for the Legendre polynomials [10, p. 197] or Erde� lyi's
asymptotic forms for the Laguerre polynomials [1].

As an application of our result, we shall also derive an asymptotic expansion
for the large zeros of pn(x). Let us denote the zeros by xn, n< } } } <xn, 2<xn, 1 .
Ma� te, Nevai, and Totik [4] have already shown that

xn, 1=\4n
3 +

1�4

&
i1

3 } 21�3 \4n
3 +

&5�12

+o(n&5�12), (1.10)

where i1 is the smallest positive zero of Airy's function A(x) defined in [10,
p. 18, 377]. The result that we shall prove is

xn, k=\4n
3 +

1�4

+
a~ k

181�3 \4n
3 +

&5�12

+
1
6 \

4n
3 +

&9�12

&
19a~ 2

k

90 } 22�3 } 31�3 \4n
3 +

&13�12

+O(n&17�12), (1.11)

for each fixed k, where a~ k is the kth negative zero of the usual Airy integral
Ai(x) defined in [8, pp. 53, 403]. In view of the relationship a~ 1=&i1 �31�3,
(1.11) agrees with (1.10). Here we have used a~ k , instead of ak , to denote
the zeros of Ai(x), in order not to confuse with the coefficients in the
recurrence relation (1.1). Note the (1.11) is not uniformly valid with respect
to k.
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2. TRANSFORMATION TO CANONICAL FORM

Recall that formula (1.9) holds for 0<%<? but fails to hold when %=0.
Thus, x=(4n�3)1�4 is a critical value for the validity of (1.9). Also note that
(1.10)�(1.11) suggests that for sufficiently large values of n, all zeros of
pn(x) lie in the interval |x|<(4n�3)1�4. Based on these observations, we
make the change of variable

x=*w with *=\4n
3 +

1�4

. (2.1)

Equation (1.6) then becomes

d 2z
dw2+q(*, w) z=0, (2.2)

where

q(*, w)=*2f (n, *w). (2.3)

It is easily seen that the only singularities of f (n, x) are the zeros of ,n(x),
which occur at x=\i - a2

n+1+a2
n r\i(n�3)1�4. Hence, q(*, w) is analytic

for w on the real axis.

Lemma. As * � �, q(*, w) has the asymptotic expansion

q(*, w)=*8 _q0(w)+
q4(w)

*4 +
q8(w)

*8 + } } } & (2.4)

which holds uniformly with respect to bounded w, where q0(w)=(1+3w2

&4w6), q4(w)=(1+2w2) and

q8(w)=
20w4&64w2+17

9(1+2w2)2 .

Proof. Substitute (1.4) in (1.7) to give

f (n, *w)=4a2
n {4(a2

n+1+a2
n)(a2

n+a2
n&1)+4*2w2(a2

n+1+a2
n+a2

n&1)+1

&
2*2w2

a2
n+1+a2

n+*2w2=&4*6w6&
4*4w4

a2
n+1+a2

n+*2w2

&
3*2w2

(a2
n+1+a2

n+*2w2)2+6*2w2+
1

a2
n+1+a2&n+*2w2 .
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From (1.3), we have

(a2
n+1+a2

n)(a2
n+a2

n&1)=
*4

4 _1&
5

27
1
*8+O \ 1

*16+& ,

a2
n+1+a2

n+a2
n&1=

3
4

*2 _1&
2
27

1
*8+O \ 1

*16+& ,

and

a2
n+1+a2

n+*2w2=
*2

2 _(1+2w2)+
1
3

1
*4&

1
27

1
*8+O \ 1

*16+& .

A combination of the last four equations leads to

f (n, *w)=(1+3w2&4w6) *6+(1+2w2) *2

+
20w4&64w2+17

9(1+2w2)2

1
*2+O \ 1

*6+ ,

where the O-term is uniform with respect to all bounded w. On account
of (2.3), this establishes the lemma. K

Let us now rewrite (2.2) and (2.3) in the form

d 2z
dw2=42 _q� 0(w)+

q� 1(w)
4

+
q� 2(w)

42 + } } } & z, (2.5)

where 4=*4=4n�3, q� 0(w)=&q0(w)=(4w6&3w2&1)=(2w2+1)2 (w2&1),
q� 1(w)=&q4(w)=&(1+2w2) and

q� 2(w)=&q8(w)=&
20w4&64w2+17

9(1+2w2)2 .

Since q� 0(w) vanishes at w=\1 and the other coefficient functions q� s(w)
are analytic there, we have exactly the extended form of the turning point
problem discussed in [8, p. 426]. From the recurrence relation (1.1), one
can readily verify by induction that pn(x) satisfies the reflection formula

pn(x)=(&1)n pn(&x).

Thus we need consider only the turning point w=+1. As suggested in
[8, p. 426], we make the Liouville�Green transformations

`={3
2 |

w

1
q� 1�2

0 (t) dt=
2�3

, Z=\ d`
dw+

1�2

z=q̂1�4(w) z, (2.6)

150 RUI AND WONG



where

q̂(w)=
q� 0(w)

`
=

(2w2+1)2 (w2&1)
`

. (2.7)

Evaluation of the integral in (2.6) gives

`(w)={&[ 9
8 cos&1 w& 3

8 w(2w2+1) - 1&w2]2�3,
[ 3

8 w(2w2+1) - w2&1& 9
8 cosh&1w]2�3 ,

&1<w<1
w�1.

(2.8)

It can be shown that the quantities inside the square brackets in (2.8) are
positive. Equation (2.5) then becomes

d 2Z
d`2 =[42`+4'(`)+�(4, `)]Z, (2.9)

with

'(`)=
q� 1(w)
q̂(w)

=
&`

(2w2+1)(w2&1)
(2.10)

and

�(4, `)t :
�

s=0

�s(`)
4s . (2.11)

By applying l'Hôpital's rule to (2.10), it can be shown that '(0)=
&3&1�3 2&2�3; cf. (2.6). Simple calculation also gives

�0(`)=
q� 2(w)
q̂(w)

&
1

q̂3�4(w)
d 2

dw2 { 1
q̂1�4(w)=

and �s(`)=q� s+2(w)�q̂(w). Since `(w), q� s(w) and 1�q̂(w) are all analytic in a
region containing the real axis in the w-plane, the functions '(`) and �s(`)
are analytic on the real line. In [8, p. 427], Olver has shown that (2.9) is
formally satisfied by the series

Z1(4, `)tAi \42�3`+
H(`)
41�3 + :

�

s=0

As(`)
4s +

1
44�3 Ai$ \42�3`+

H(`)
41�3 + :

�

s=0

Bs(`)
4s ,

(2.12)

where

H(`)=
1

2`1�2 |
`

0

'(v)
v1�2 dv (2.13)
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and the coefficients As , and Bs satisfy the recurrence relations

Bs+2`B$s=�0As+�1As&1+ } } }

+�sA0&(2HH$+`H$2) As&A"s&HH$2As&1

&(2H$+`H") Bs&1&2(`H$+H) B$s&1

&(HH"+H$2) Bs&2&2HH$B$s&2 (2.14)

and

2A$s+1=&H"As&2H$A$s+�0Bs&1+�1Bs&2+ } } } +�s&1B0

&(2HH$+`H$2) Bs&1&B"s&1&HH$2Bs&2 , (2.15)

with A0(`)=1 and

B0(`)=
1

2`1�2 |
`

0
[�0(v)&2H(v) H$(v)&vH$2(v)]

dv
v1�2 .

Note that by inserting (2.10) in (2.13) and using (2.6), it can be proved that

H(`)={
&1
2`1�2 cosh&1 w,

&1
2(&`)1�2 cos&1 w,

w�1

|w|<1
(2.16)

Also note that by applying l'Hôpital's rule directly to (2.13), it can be verified
that

H(0)=
&1

31�322�3 and H$(0)=
1
15

. (2.17)

Since 2`H$(`)+H(`)='(`) by (2.13), it follows from (2.15)

A1(`)=&
1
2 |

`

0
H"(`) d`=&

1
2

[H$(`)&H$(0)]

=&
1
2 {

'(`)&H(`)
2`

&
1
15= .

Olver [8, p. 428] has also briefly indicated how to establish the asymptotic
nature of the formal expansion (2.12). Along the lines he has suggested, we
have obtained an analogue of Theorem 7.1 in [8, p.410]. Here we shall be
content with just the special case of a one-term approximation. Before stat-
ing the result, we first recall the modulus function M(x) and the weight
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function E(x) associated with the Airy functions Ai(x) and Bi(x); cf. [8,
p. 395]. Let x=c denote the negative root of the equation

Ai (x)=Bi (x)

of smallest absolute value. Numerical calculation has shown that c=
&0.36605, correct to five decimal places. Define E(x)=1 for &�<x�c,

E(x)=[Bi(x)�Ai(x)]1�2, c�x<�,

and

M(x)=[E 2(x) Ai2(x)+E&2(x) Bi2(x)]1�2,

where E&1(x)=1�E(x). Next we introduce the error control function

80(4, `)=|
`

0 } !+
H(!)

4 }
&1�2

d!. (2.18)

It is readily seen that this integral is convergent.

Theorem 1. Equation (2.9) has a pair of infinitely differentiable solution
Z1(4, `) and Z2(4, `), given by

Z1(4, `)={Ai \42�3`+
H(`)
41�3 ++=1(4, `)= , (2.19)

Z2(4, `)={Bi \42�3`+
H(`)
41�3 ++=2(4, `)= , (2.20)

For sufficiently large value of 4, the error terms satisfy

|=1(4, `)|�M \42�3`+
H(`)
41�3 + , |�=1(4, `)��`|�42�3N \42�3`+

H(`)
41�3 +

�
K
4

E&1 \42�3`+
H(`)
41�3 + exp {K0

4
V̀, `(M)( |`|1�2B0(`))= V̀, `(M)(80(4, `))

(2.21)

and

|=2(4, `)|�M \42�3`+
H(`)
41�3 + , |�=2(4, `)��`|�42�3N \42�3`+

H(`)
41�3 +

�
K
4

E \42�3`+
H(`)
41�3 + exp {K0

4
V̀(&1+=), ` ( |`|1�2 B0(`))=

_V̀(&1+=), ` (80(4, `)) (2.22)
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where K and K0 are positive constants, Va, b( f ) denotes the total variation
of a function f (x) on an interval (a, b), and `=`(w) is the function given
in (2.8).

The total variation of f (x) on [a, b] is defined by

Va, b( f )=sup :
k

i=1

| f (x i)& f (x i&1)|,

where the supremum is taken over all possible subdivisions of the interval
[a, b]. If f (x) is continuously differentiable in [a, b], then we also have

Va, b( f )=|
b

a
| f $(x)| dx;

see [8, pp. 27�28].
In view of asymptotic forms

E(x)t21�2 exp( 2
3 x3�2), M(x)t?&1�2x&1�4 (x � +�)

and

M(x)t?&1�2(&x)&1�4 (x � &�),

we have

=1(4, `)=O(4&1), (2.23)

as 4 � �, uniformly with respect to ` in any bounded interval containing
`=0 and contained in (`(&1), �). When ` is bounded away from 0, we
also have

=1(4, `)=O(4&7�6). (2.24)

3. UNIFORM ASYMPTOTIC FORMULA FOR pn(x) exp(&x4�2)

We first recall the asymptotic formulas

Ai(x)t
1

2?1�2x1�4 exp \&
2
3

x3�2+
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and

Bi(x)t
1

?1�2x1�4 exp \2
3

s3�2+
as x � �. Since the function z(x)= pn(x)[,n(x)]&1�2 exp(&x4�2) in (1.5)
is exponentially small as x � �, by (2.6) there exists a constant C(n) such
that

pn(x)[,n(x)]&1�2 exp \&
x4

2 +=C(n) q̂&1�4(w) Z1(4, `), (3.1)

where Z1(4, `) is the asymptotic solution given in (2.12); cf. also (2.19).
Next we need to find a formula for C(n) as n � �. When x=0, we have
w=0 by (2.1) and `=&(9?�16)2�3 by (2.8). Since 4=4n�3, it follows from
(3.1), (2.19), and (1.4) that

pn(0)[a2
n+1+a2

n]&1�2

=C(n) q̂&1�4(0) {Ai _&\3?
4 +

2�3

n2�3&\ ?

4 - 3+
2�3 1

n1�3&+O(n&7�6)= .

(3.2)

Here we have also made use of (2.16) and (2.24).
Since pn(x) satisfies the reflection formula mentioned in Section 2, it

contains only odd powers of x when n is odd, and only even powers of x
when n is even. Furthermore, p2k+1(0)=0 and

p2k(0)=(&1)k #0

a1a3 } } } a2k&1

a2 a4 } } } a2k
. (3.3)

Since the infinite products

`
�

k=1

12a4
2k&1

2k&1
and `

�

k=1

2k
12a4

2k

are convergent, from (3.3) it can be proved that when n is even, there exists
a constant A such that

pn(0)=A cos \n?
2 + n&1�8[1+O(n&1)]; (3.4)
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see [6]. Recall the asymptotic formula [8, p. 392]

Ai(&x)=
1

?1�2x1�4 {cos \2
3

x3�2&
?
4+ [1+O(x&3)]

+sin \2
3

x3�2&
?
4+ _

5
48

x&3�2+O(x&9�2)&= (3.5)

as x � +�. Upon simplification, we obtain

Ai _&\3?
4 +

2�3

n2�3&\ ?

4 - 3+
2�3 1

n1�3&
=\3

4+
&1�6

?&2�3(&1)n�2 n&1�6[1+O(n&1)]. (3.6)

Thus, when n is an even integer, a combination of (3.2), (3.4), and (3.6)
gives

C(n)=31�1221�3?1�2An&5�24[1+O(n&1)] (3.7)

on account of (1.3) and (2.7). Note that q̂(0)=(16�9?)2�3 and cos(n?�2)=
(&1)n�2. Inserting (3.7) and (2.19) into (3.1) yields

pn(x)[,n(x)]&1�2 exp \&
x4

2 +=31�1221�3?1�2An&5�24[1+O(n&1)]

_q̂&1�4(w) {Ai \42�3`+
H(`)
41�3 ++=1(4, `)= .

(3.8)

Since ,1�2
n (x)=(n�3)1�4 (1+2w2)1�2 [1+O(n&1)] by (1.3) and (2.1), (3.8)

becomes

pn(x) exp \&
x4

2 +=3&1�621�3?1�2A(1+2w2)1�2 n1�24

_q̂&1�4(w) {Ai \42�3`+
H(`)
41�3 ++O(n&1)= (3.9)
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by virtue of (2.23), uniformly for ` # (`(&1+=), `(M)) or, equivalently,
&1+=<w<M. If ` is bounded away from 0, i.e., w bounded away from
1, then we have even the better estimate

pn(x) exp \&
x4

2 +=3&1�621�3?1�2A(1+2w2)1�2 n1�24

_q̂&1�4(w) {Ai \42�3`+
H(`)
41�3 ++O(n&7�6)= (3.10)

on account of (2.24).
When n is an odd integer, from (3.1) we must have Z1(4, `(0))=0 since

pn(0)=0. Thus, the value of C(n) in this case can be determined from (3.1)
by a limiting process. Put

C(n)= lim
x � 0

pn(x)[,n(x)]&1�2 exp(&x4�2)
q̂&1�4(w) Z1(4, `(w))

, (3.11)

and observe that

lim
x � 0

[,n(x)]&1�2 exp(&x4�2) q̂1�4(w)=(a2
n+1+a2

n)&1�2 \16
9?+

1�6

=22�3?&1�63&1�12n&1�4[1+O(n&1)].

(3.12)

By l'Hôpital's rule,

lim
x � 0

pn(x)
Z1(4, `(w))

= lim
x � 0

p$n(x)
(dZ1 �d`)(d`�dw)(dw�dx)

. (3.13)

Since

dw
dx }x=0

=\4n
3 +

&1�4

, (3.14)

d`
dw }w=0

=\16
9?+

1�3

(3.15)

and

dZ1

d`
=Ai $ \42�3`+

H(`)
41�3 + \42�3+

H$(`)
41�3 ++

d=1

d`
, (3.16)
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from (3.13) we obtain

lim
x � 0

pn(x)
Z1(4, `(w))

=(&1)&(n&1)�2 2&11�6311�12?2�3p$n(0) n&7�12[1+O(n&1)],

(3.17)

where we have made use of the facts that C(0)=&(9?�16)2�3, 4=4n�3 and

Ai $(&x)=
x1�4

?1�2 sin \2
3

x3�2&
?
4++O(x&5�4), x � �; (3.18)

see [8, p. 392]. Inserting (3.12) and (3.17) into (3.11) gives

C(n)=(&1)&(n&1)�2 2&7�635�6?1�2n&5�6p$n(0)[1+O(n&1)].

Using (1.1), (1.2) and (1.4), it can be verified by induction that

p$n(0)=4an ,n(0) pn&1(0);

see also [5, formula (12)]. Coupling the last two equations yields

C(n)=31�1221�3?1�2An&5�24[1+O(n&1)]

on account of (3.4), which is exactly the same as (3.7). Therefore,

C(n)t31�1221�3?1�2An&5�24

for all n�1, and the asymptotic formulas (3.9) and (3.10) hold for all n,
whether n is even or odd.

The value of the constant A in (3.4) has already been given explicitly by
Nevai [6, p. 1183]:

A2=121�4�?. (3.19)

However, by using the uniform asymptotic formula (3.9), a shorter proof
can be provided.

Theorem 2. Let 0<=<1 and 0<M<� be fixed, and let x=
(4n�3)1�4 w and 4=4n�3. Then the asymptotic formula

pn(x) exp \&
x4

2 +=- 2 41�24 \ `
w2&1+

1�4

{Ai \42�3`+
H(`)
41�3 ++O(n&1)=

(3.20)
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holds uniformly for &1+=�w�M, where ` and H(`) are given in (2.8) and
(2.16), respectively. Moreover, when &1+=�w�1&=, we also have the
uniform asymptotic formula

pn(x) exp \&
x4

2 +=- 2 41�24 \ `
w2&1+

1�4

{Ai \42�3`+
H(`)
41�3 ++O(n&7�6)=

(3.21)

To see that Nevai's result (1.9) can be deduced from (3.21), we note from
(3.5) that

pn(x) exp \&
x4

2 +=
121�8

?1�2 n&1�8 1
(1&w2)1�4

_cos {8
9

(&`)3�2 n&- &` H(`)&
?
4=+O(n&9�8)

(3.22)

for &1+=�w�1&=. Let w=cos %. Then from (3.22) we obtain

pn(x) exp \&
x4

2 +
=121�8?&1�2n&1�8(sin %)&1�2

_cos {n%&
n
3

cos %(2 cos2 %+1) sin %+
%
2

&
?
4=+O(n&9�8)

(3.23)

uniformly for =� �%�?&=� , =� >0. In view of a trigonometric identity, it is
readily seen that (3.23) agrees with (1.9).

4. PROOF OF (1.11)

Let the zeros of pn(x) be arranged in decreasing order:

&�<xn, n<xn, n&1< } } } <xn, 2<xn, 1<�.

In view of the fact that

lim
w � 1

`
w2&1

=\3
2+

2�3

{0,
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it follows from (3.20) (see also (3.8)) that xn, k can be determined by the
roots of the equation

Ai _42�3`+
H(`)
41�3 &+=1(4, `)=0, (4.1)

where =1(4, `) satisfies the estimates in (2.2). Let a~ k denote the kth negative
zero of the Airy integral Ai(x), and let `n, k denote the kth root of equa-
tion (4.1). Since =1(4, `)=O(n&1), it is reasonable to expect that

`n, k r`n(a~ k),

where `n(a~ k) satisfies

\4n
3 +

2�3

`n(a~ k)+
H(`n(a~ k))
(4n�3)1�3 =a~ k . (4.2)

since `=`(w) is finite on the interval &1+=�w�M, H(`) is bounded on
`(&1+=)�`�`(M). From (4.2), it follows that `n(a~ k) is negative when n
sufficiently large.

In the following analysis, we suppose that 4 is large enough so that

K
4

V̀, `(M)(80(4, `)) exp {K0

4
V̀, `(M)( |`| 1�2B0)=<

1
2

. (4.3)

Also, we put

p1(4, `)==1(4, `) E _42�3`+
H(`)
41�3 &<M _42�3`+

H(`)
41�3 & (4.4)

and

_1(4, `)=
K
4

V̀, `(M)(80(4, `))exp {K0

4
V̀, `(M)( |`| 1�2 B0)= . (4.5)

From (2.21), we have |\1(4, `)|�_1(4, `)< 1
2 . We shall next rewrite equa-

tion (4.1) in terms of the phase function %(x) defined by

E(x) Ai(x)=M(x) sin %(x), E&1(x) Bi(x)=M(x) cos %(x). (4.6)

see [8, p. 394]. Note that

%(x)=tan&1[E 2(x) Ai(x)�Bi(x)].
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and %(x)= 1
4? for x�c; cf. [8, p. 395]. Coupling (4.1) and (4.6), we obtain

sin % _42�3`+
H(`)
41�3 &=&\1(4, `). (4.7)

Since the left-hand side equals 1�- 2 when 42�3`+H(`) 4&1�3�c while the
right-hand side is less than 1�2, there can be no roots to equation (4.1) in
this range. Hence, for `�0 and 4 sufficiently large, the function on the left-
hand side of (4.1) has no zeros. Recall that `�0 corresponds to w�1 by
(2.8), and that w�1 corresponds to x�(4n�3)1�4 by (2.1). Therefore, in
view of (3.20), the polynomial pn(x) has no zero in x�(4n�3)1�4. By
symmetry, pn(x) also has no zero in x�&(4n�3)1�4. That is, all zeros of
pn(x) lie in the interval &(4n�3)1�4<x<(4n�3)1�4; equivalently, all roots of
equation (4.7) lie in the interval &(9?�8)2�3<`<0. In this range, the
trigonometric equation (4.7) can be written in the form

% _42�3`+
H(`)
41�3 &&k?&(&1)k&1 arcsin [\1(4, `)]=0. (4.8)

Let bk denote the k th negative zero of Bi(x), and let `n(bk) satisfy the
equation

\4n
3 +

2�3

`n(bk)+
H(`n(bk))
(4n�3)1�3 =bk . (4.9)

From the estimate

|arcsin \1(4, `)|<arcsin
1
2

=
?
6

and the result [8, p. 404]

%(bk)=(k& 1
2)?,

it is readily seen that the left-hand side of (4.8) is negative when `=`n(bk)
and positive when `=`n(bk+1). Hence, in the range

bk+1<42�3`+
H(`)
41�3 <bk (4.10)

or, equivalently, `n(bk+1)<`<`n(bk), Eq. (4.8) must have a root. [Note
that 42�3`+4&1�3 H(`) is monotonically increasing in ` for sufficiently large
values of 4.] Since the function on the left-hand side of (4.8) is decreasing
in the interval `n(bk+1)<`<`n(bk), as we shall see later in the discussion,
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Eq. (4.8) has only one root in this range. Let us now investigate the rela-
tionship between this zero and the kth zero of Ai(x). By the mean-value
theorem, we have

% _42�3`+
H(`)
41�3 &=%(a~ k)+_42�3`+

H(`)
41�3 &a~ k& %$(!),

where ! # (bk+1 , bk). Recall from [8, p. 404] that %(a~ k)=k?. Hence, by
(4.8).

42�3`+
H(`)
41�3 &a~ k=(&1)k&1 arcsin[\1(4, `)]�%$(!). (4.11)

Using the inequalities |\1(4, `)|�_1(4, `)<1�2 and sin t>(3�?) t for
0<t<?�6, we obtain

}42�3`+
H(`)
41�3 &a~ k }�?

3
_1(4, `)�|%$(!)|.

Since |%$(!)| is decreasing in ! (see [8, p. 404]) and _1(4, `) is decreasing
in `, it follows that

}42�3`+
H(`)
41�3 &a~ k }�:k , (4.12)

where

:k=
?
3

_1(4, `n(bk+1))�|%$(bk)|. (4.13)

In view of the identity [8, p. 404]

%$(x)=1�[?M2(x)], (4.14)

equation (4.13) gives

:k=
?2

3
M2(bk) _1(4, `n(bk+1))=M2(bk) O \1

n+; (4.15)

cf. (4.5).
We now turn to the proof of the monotonicity of the function on the left-

hand side of (4.8). By virtue of (4.14) and the asymptotic formula [8, p. 395]

M(x)t?&1�2x&1�4 (x � +�),
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%$(x) is strictly negative for all x>0. Thus, to prove that the derivative of
the function on the left-hand side of (4.8) is strictly less than zero, it suffices
to show that

{1&\2
1(4, `)=

&1�2

} d
d`

\1(4, `) }<_42�3+
H$(`)
41�3 & } %$ \42�3`+

H(`)
41�3 + } .

(4.16)

Also since E(x)=1 for x�c, on account of (4.4) we have

d
d`

\1(4, `)=
1

M[42�3`+4&1�3H(`)]
d
d`

=1(4, `)

&
M$[42�3`+4&1�3H(`)]
M2[42�3`+4&1�3H(`)]

[42�3+4&1�3H$(`)] =1(4, `).

From (2.21), it follows that

{1&\2
1(4, `)=

&1�2

} d
d`

\1(4, `) }
�

|42�3+4&1�3H$(`)|
[1&_2

1(4, `)]1�2 _1(4, `)

_
N[42�3`+4&1�3H(`)]+M$[42�3`+4&1�3H(`)]

M[42�3`+4&1�3H(`)]
. (4.17)

Here we have also made use of the fact that H$(`)>0 and hence 42�3<
42�3+4&1�3H$(`). Coupling (4.17) and (4.14), it is evident that (4.16) holds
if

_1(4, `)
[1&_2

1(4, `)]1�2<
1

_?M[42�3`+4&1�3H(`)][N[42�3`+4&1�3H(`)]
+M$[42�3`+4&1�3H(`)] &

.

(4.18)

The left-hand side of (4.18) is less than 1�- 3=0.577..., since _1(4, `)< 1
2 .

The right-hand side of (4.18) is decreasing function of [42�3`+4&1�3H(`)]
by Lemma 5.1 in [8, p. 404]. When 42�3`+4&1�3H(`)=c, its value is

1

?Ai(c)[Ai $(c)+Bi $(c)+- 2Ai $2(c)+2Bi $2(c)]
=0.708... .
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Therefore, (4.18) and (4.16) are satisfied, and equation (4.8) has only one
root in the interval (4.10) or, equivalently, in the interval `n(bk+1)<`<
`n(bk). (Much of the above argument is patterned after that given in [8,
pp. 406�407.)

Let xn, k denote the kth zero of pn(x), counted from right to left. Let `n, k

and wn, k denote the corresponding values determined by (2.1) and (2.8),
respectively. Since a root of equation (4.1) is also a root of Eq. 4.8), `n, k

satisfies `n(bk+1)<`n, k<`n(bk), or more accurately

a~ k&:k<42�3`n, k+
H(`n, k)

41�3 <a~ k+:k

on account of (4.12). Therefore

42�3`n, k+
H(`n, k)

41�3 =a~ k+O \1
n+ ; (4.19)

see (4.15). Since H(`n, k) is bounded for all n and k, we have the prelimary
approximation `n, k=a~ k4&2�3+O(n&1). By the mean-value theorem, H(`n, k)
=H(0)+O(n&2�3)=&3&1�32&2�3+O(n&2�3). Substituting this into (4.19)
gives

`n, k=a~ k 4&2�3+3&1�32&2�34&1+O(n&5�3). (4.20)

Let 0(`) denote the inverse of the function `(w) so that `=`(w) if and only
if w=0(`). Since `n, k=`(wn, k) and xn, k=(4n�3)1�4 wn, k , from (4.20) we
derive

xn, k=\4n
3 +

1�4

0 {_a~ k \4n
3 +

&2�3

+3&1�32&2�3 \4n
3 +

&1

&+O(n&5�3)= .

By the mean-value theorem again, we obtain

xn, k=\4n
3 +

1�4

0 {a~ k \4n
3 +

&2�3

+3&1�32&2�3 \4n
3 +

&1

=+O(n&17�12) . (4.21)

To proceed further, we expand 0(`) into the Maclaurin series

0(`)=0(0)+0$(0)`+ 1
2 0"(0) `2+ } } } . (4.22)
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Since `(1)=0, we have 0(0)=1. Differentiating with respect to ` on both
sides of the first equation in (2.6) yields

dw
d`

=q� &1�2
0 (w) {3

2 |
w

1
q� 1�2

0 (t) dt=
1�3

=
`1�2

q� 1�2
0 (w)

.

Using l'Hôspital's rule, it can be shown that

0$(0)=
dw
d` } `=0

=[q� $0(1)]&1�3.

In a similar manner, it can be verified that

0"(0)=
d 2w
d`2 } `=0

=&
1
5

q� "0(1)
[q� $0(1)]5�3 .

Simple computation gives q� $0(1)=18 and q� "0(1)=114. Hence

0$(0)=
1

181�3 and 0"(0)=&
1
5

114
185�3 .

Applying (4.22) to (4.21) leads to

xn, k=\4n
3 +

1�4

+
1

181�3 _a~ k \4n
3 +

&2�3

+3&1�32&2�3 \4n
3 +

&1

& \4n
3 +

1�4

&
1
10

114
185�3 _a~ k \4n

3 +
&2�3

+3&1�32&2�3 \4n
3 +

&1

&
2

\4n
3 +

1�4

+O(n&17�12).

To summarize, we have the following result.

Theorem 3. Let the zeros of the polynomial pn(x) in (1.1) be enumerated
in decreasing order: &�<xn, n< } } } <xn, 2<xn, 1<�. For each positive
zero xn, k , we have

xn, k=\4n
3 +

1�4

+
a~ k

181�3 \4n
3 +

&5�12

+
1
6 \

4n
3 +

&9�12

&
19a~ 2

k

90 } 22�3 } 31�3 \4n
3 +

&13�12

+O(n&17�12),

where a~ k is the kth negative zero of the Airy function Ai(x) and the O-symbol
depends on k.
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